13547 measured reflections

 $R_{\rm int} = 0.044$

3244 independent reflections

1939 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

rac-3-[(Anilino)(naphthalen-2-yl)methyl]thian-4-one

Klaus Harms,^a* M. Saeed Abaee,^b Mohammad M. Mojtahedi^b and A. Wahid Mesbah^b

^aFachbereich Chemie, Philipps Universität Marburg, Hans Meerwein Strasse, Marburg, D-35032, Germany, and ^bDepartment of Organic Chemistry, Chemistry and Chemical Engineering Research Center of Iran, PO Box 14335-186, Tehran, Iran Correspondence e-mail: harms@chemie.uni-marburg.de

Received 17 January 2012; accepted 10 February 2012

Key indicators: single-crystal X-ray study; T = 193 K; mean σ (C–C) = 0.003 Å; R factor = 0.033; wR factor = 0.074; data-to-parameter ratio = 14.1.

In the title compound, $C_{22}H_{21}NOS$, the thiopyranone ring adopts a chair-like conformation with the substituent in the axial position. The relative configuration of the racemic compound is 3R,7S according to the numbering scheme used in this publication. In the crystal packing, centrosymmetric dimers are built up via $N-H \cdots O$ hydrogen bonds, with graph set $R_2^2(8)$.

Related literature

For the preparation and spectroscopic characterization of the title compound and a series of related compounds, see: Abaee et al. (2012). For the crystal structure of rac-3-[(3-chloroanilino)(4-chlorophenyl)methyl]thian-4-one, see: Harms et al. (2012). For the crystal structures of related compounds, see: Guo et al. (2007); Fun et al. (2009). For patterns in hydrogen bonding, see: Bernstein et al. (1995).

NH rac

Experimental

Crystal data

C ₂₂ H ₂₁ NOS	V = 1865.5 (4) Å ³
$M_r = 347.46$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 10.8049 (10) Å	$\mu = 0.18 \text{ mm}^{-1}$
b = 10.5497 (15) Å	T = 193 K
c = 16.4936 (16) Å	$0.45 \times 0.45 \times 0.36 \text{ mm}$
$\beta = 97.141 \ (8)^{\circ}$	

Data collection

Stoe IPDS I diffractometer Absorption correction: integration [X-ÂREA and X-RED32 (Stoe & Cie, 2006)] $T_{\min} = 0.942, T_{\max} = 0.960$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.033$	H atoms treated by a mixture of
$wR(F^2) = 0.074$	independent and constrained
S = 0.79	refinement
3244 reflections	$\Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^{-3}$
230 parameters	$\Delta \rho_{\rm min} = -0.37 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ $H \cdot \cdot \cdot A$ D-H $D - H \cdot \cdot \cdot A$ $D \cdot \cdot \cdot A$ $N8 - H8 \cdot \cdot \cdot O1^i$ 0.926 (15) 2.121 (16) 3.0450 (18) 175.4 (13)

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Data collection: EXPOSE (Stoe & Cie, 1994); cell refinement: CELL (Stoe & Cie, 1994); data reduction: X-RED32 (Stoe & Cie, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008): molecular graphics: DIAMOND (Brandenburg, 2007): software used to prepare material for publication: publCIF (Westrip, 2010), PLATON (Spek, 2009), and WinGX (Farrugia, 1999).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2509).

References

- Abaee, M. S., Motjahedi, M. M., Akbari, A., Mehraki, E., Mesbah, A. W. & Harms, K. (2012). J. Heterocycl. Chem. 49. In the press.
- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.

Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

- Fun, H.-K., Chantrapromma, S., Rai, S., Shetty, P. & Isloor, A. M. (2009). Acta Cryst. E65, 0539-0540.
- Guo, Q.-X., Liu, H., Guo, Ch., Luo, S.-W., Gu, Y. & Gong, L.-Z. (2007). J. Am. Chem. Soc. 129, 3790-3791.
- Harms, K., Abaee, M. S., Mojtahedi, M. M. & Mesbah, A. W. (2012). Acta Cryst. E68, 0646.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stoe & Cie (1994). IPDS User Manual. Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (2006). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2012). E68, o749 [doi:10.1107/S1600536812005983]

rac-3-[(Anilino)(naphthalen-2-yl)methyl]thian-4-one

Klaus Harms, M. Saeed Abaee, Mohammad M. Mojtahedi and A. Wahid Mesbah

Experimental

The title compound is an example of a series of products of an *anti*-selective three-component Mannich reaction in the thiopyran-4-one system; see Abaee *et al.* (2012) for details. Colourless crystals suitable for crystal structure determination were grown from ethyl acetate.

Refinement

Data have been merged using the program *X-RED32* (Stoe & Cie, 2006). Three beamstop affected reflections (1 1 0, -1 1 1, 0 1 1) have been excluded from the data during the refinement. All C bonded H atoms were placed in geometrical positions and constrained to ride on their parent atoms with C—H distances in the range 0.95–1.00 Å. The U_{iso} values were constrained to be $1.2U_{eq}$ of the parent C atom. The position of the N bonded H atom has been refined freely with an isotropic displacement factor. The N—H bond length is 0.926 (15) Å.

Computing details

Data collection: *EXPOSE* (Stoe & Cie, 1994); cell refinement: *CELL* (Stoe & Cie, 1994); data reduction: *X-RED32* (Stoe & Cie, 2006); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2007); software used to prepare material for publication: *publCIF* (Westrip, 2010), *PLATON* (Spek, 2009), and *WinGX* (Farrugia, 1999).

Figure 1

Molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 50% probability level. H atoms are presented as small spheres of arbitrary radius. Dotted lines indicate hydrogen bonds to the neighbouring molecule generated by crystallographic inversion symmetry. For symmetry code (i), see Table 1.

rac-3-[(Anilino)(naphthalen-2-yl)methyl]thian-4-one

Crystal data	
$C_{22}H_{21}NOS$	F(000) = 736
$M_r = 347.46$	$D_{\rm x} = 1.237 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 7999 reflections
a = 10.8049 (10) Å	$\theta = 2.3 - 26.0^{\circ}$
b = 10.5497 (15) Å	$\mu = 0.18 \text{ mm}^{-1}$
c = 16.4936 (16) Å	T = 193 K
$\beta = 97.141 \ (8)^{\circ}$	Nugget, colourless
$V = 1865.5 (4) \text{ Å}^3$	$0.45 \times 0.45 \times 0.36 \text{ mm}$
Z = 4	

Data collection

Stoe IPDS I	13547 measured reflections
diffractometer	3244 independent reflections
Radiation source: fine-focus sealed tube	1939 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.044$
Detector resolution: 6.67 pixels mm ⁻¹	$\theta_{\rm max} = 25.4^{\circ}, \ \theta_{\rm min} = 2.1^{\circ}$
rotation method scans	$h = -13 \rightarrow 12$
Absorption correction: integration	$k = -12 \rightarrow 12$
[X-AREA and X-RED32 (Stoe & Cie, 2006)]	$l = -19 \rightarrow 19$
$T_{\min} = 0.942, \ T_{\max} = 0.960$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.033$	Hydrogen site location: inferred from
$wR(F^2) = 0.074$	neighbouring sites
S = 0.79	H atoms treated by a mixture of independent
3244 reflections	and constrained refinement
230 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0399P)^2]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^{-3}$
	$\Delta \rho_{\min} = -0.37 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.06564 (5)	0.68462 (6)	0.53056 (4)	0.0733 (2)	
01	0.38884 (11)	0.55992 (11)	0.42256 (7)	0.0481 (3)	
N8	0.48932 (11)	0.69693 (12)	0.59618 (8)	0.0318 (3)	
H8	0.5282 (14)	0.6206 (15)	0.5880 (10)	0.033 (4)*	
C2	0.16654 (16)	0.55096 (17)	0.55576 (14)	0.0568 (6)	
H2A	0.1584	0.5237	0.6123	0.068*	
H2B	0.1386	0.4798	0.5188	0.068*	
C3	0.30417 (14)	0.57832 (15)	0.54910 (11)	0.0359 (4)	
Н3	0.3517	0.4977	0.5611	0.043*	
C4	0.32089 (15)	0.61845 (15)	0.46296 (11)	0.0381 (4)	
C5	0.24585 (19)	0.72936 (18)	0.42754 (13)	0.0579 (6)	
H5A	0.2618	0.7424	0.3703	0.070*	
H5B	0.2728	0.8067	0.4588	0.070*	
C6	0.1050 (2)	0.7089 (2)	0.42969 (16)	0.0808 (8)	
H6A	0.0776	0.6344	0.3956	0.097*	
H6B	0.0591	0.7838	0.4055	0.097*	

C7	0.36003 (13)	0.67883 (14)	0.61120 (10)	0.0301 (4)
H7	0.3141	0.7603	0.5991	0.036*
С9	0.56671 (14)	0.78247 (14)	0.64329 (10)	0.0306 (4)
C10	0.52229 (16)	0.89433 (15)	0.67309 (11)	0.0414 (4)
H10	0.4354	0.9118	0.6656	0.050*
C11	0.60450 (18)	0.98055 (17)	0.71379 (12)	0.0519 (5)
H11	0.5731	1.0574	0.7333	0.062*
C12	0.73045 (18)	0.95712 (18)	0.72650 (13)	0.0542 (5)
H12	0.7860	1.0172	0.7541	0.065*
C13	0.77470 (17)	0.84535 (18)	0.69860 (12)	0.0494 (5)
H13	0.8615	0.8275	0.7078	0.059*
C14	0.69458 (15)	0.75867 (16)	0.65734 (11)	0.0396 (4)
H14	0.7268	0.6819	0.6383	0.047*
C15	0.34684 (14)	0.64065 (13)	0.69838 (10)	0.0309 (4)
C16	0.25886 (15)	0.69614 (14)	0.74005 (11)	0.0362 (4)
H16	0.2072	0.7609	0.7141	0.043*
C17	0.24295 (15)	0.65944 (15)	0.82070 (11)	0.0358 (4)
C18	0.14989 (17)	0.71312 (17)	0.86377 (12)	0.0484 (5)
H18	0.0965	0.7772	0.8386	0.058*
C19	0.1364 (2)	0.67372 (18)	0.94068 (12)	0.0561 (6)
H19	0.0730	0.7099	0.9685	0.067*
C20	0.21464 (19)	0.58064 (17)	0.97926 (12)	0.0551 (6)
H20	0.2039	0.5538	1.0329	0.066*
C21	0.30610 (18)	0.52812 (16)	0.94044 (11)	0.0457 (5)
H21	0.3597	0.4660	0.9677	0.055*
C22	0.32231 (15)	0.56508 (14)	0.85973 (11)	0.0353 (4)
C23	0.41391 (15)	0.51076 (15)	0.81611 (11)	0.0385 (4)
H23	0.4686	0.4481	0.8417	0.046*
C24	0.42500 (14)	0.54655 (14)	0.73845 (11)	0.0354 (4)
H24	0.4866	0.5076	0.7104	0.042*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0349 (2)	0.0790 (4)	0.1041 (6)	-0.0052 (3)	0.0016 (3)	-0.0435 (4)
O1	0.0546 (7)	0.0537 (7)	0.0350 (8)	0.0127 (6)	0.0011 (7)	-0.0116 (6)
N8	0.0310 (7)	0.0330 (7)	0.0325 (9)	-0.0052 (6)	0.0084 (6)	-0.0056 (6)
C2	0.0460 (11)	0.0515 (11)	0.0727 (16)	-0.0199 (9)	0.0067 (11)	-0.0201 (10)
C3	0.0378 (9)	0.0311 (8)	0.0383 (12)	-0.0046 (7)	0.0032 (8)	-0.0072 (7)
C4	0.0410 (9)	0.0359 (9)	0.0348 (12)	-0.0004 (8)	-0.0054 (9)	-0.0129 (8)
C5	0.0824 (14)	0.0510 (11)	0.0378 (13)	0.0241 (10)	-0.0030 (11)	-0.0043 (9)
C6	0.0664 (14)	0.0796 (16)	0.085 (2)	0.0312 (12)	-0.0363 (13)	-0.0339 (14)
C7	0.0305 (8)	0.0311 (8)	0.0293 (10)	-0.0030 (7)	0.0062 (7)	-0.0028 (7)
C9	0.0353 (8)	0.0343 (8)	0.0222 (10)	-0.0076 (7)	0.0031 (8)	0.0042 (7)
C10	0.0392 (9)	0.0390 (9)	0.0449 (13)	-0.0053 (8)	0.0005 (9)	-0.0058 (8)
C11	0.0577 (12)	0.0432 (10)	0.0518 (15)	-0.0085 (9)	-0.0048 (11)	-0.0117 (9)
C12	0.0549 (12)	0.0532 (12)	0.0490 (15)	-0.0191 (10)	-0.0154 (10)	-0.0005 (10)
C13	0.0380 (9)	0.0556 (12)	0.0508 (14)	-0.0110 (9)	-0.0100 (9)	0.0116 (10)
C14	0.0399 (9)	0.0402 (9)	0.0379 (12)	-0.0031 (8)	0.0022 (9)	0.0073 (8)
C15	0.0303 (8)	0.0294 (8)	0.0337 (11)	-0.0061 (7)	0.0067 (8)	-0.0040 (7)

supplementary materials

C16	0.0391 (8)	0.0338 (9)	0.0364 (12)	0.0022 (7)	0.0077 (8)	-0.0008 (8)
C17	0.0424 (9)	0.0331 (9)	0.0336 (11)	-0.0021 (7)	0.0118 (9)	-0.0048 (7)
C18	0.0591 (11)	0.0453 (10)	0.0440 (13)	0.0128 (9)	0.0188 (10)	-0.0016 (9)
C19	0.0763 (14)	0.0537 (11)	0.0440 (14)	0.0113 (11)	0.0299 (12)	-0.0060 (10)
C20	0.0856 (15)	0.0481 (11)	0.0354 (12)	0.0026 (11)	0.0228 (12)	-0.0021 (9)
C21	0.0627 (12)	0.0381 (9)	0.0371 (12)	0.0003 (9)	0.0097 (10)	-0.0001 (8)
C22	0.0419 (9)	0.0314 (8)	0.0336 (11)	-0.0044 (7)	0.0082 (8)	-0.0027 (7)
C23	0.0382 (9)	0.0347 (9)	0.0432 (13)	0.0030 (7)	0.0078 (9)	0.0023 (8)
C24	0.0325 (8)	0.0356 (9)	0.0398 (12)	0.0012 (7)	0.0114 (8)	0.0000 (8)
C20 C21 C22 C23 C24	0.0856 (15) 0.0627 (12) 0.0419 (9) 0.0382 (9) 0.0325 (8)	0.0481 (11) 0.0381 (9) 0.0314 (8) 0.0347 (9) 0.0356 (9)	0.0354 (12) 0.0371 (12) 0.0336 (11) 0.0432 (13) 0.0398 (12)	0.0026 (11) 0.0003 (9) -0.0044 (7) 0.0030 (7) 0.0012 (7)	0.0228 (12) 0.0097 (10) 0.0082 (8) 0.0078 (9) 0.0114 (8)	-0.0021 (9) -0.0001 (8) -0.0027 (7) 0.0023 (8) 0.0000 (8)

Geometric parameters (Å, °)

S1—C6	1.786 (3)	C11—H11	0.9500	
S1—C2	1.799 (2)	C12—C13	1.373 (3)	
O1—C4	1.2190 (18)	C12—H12	0.9500	
N8—C9	1.398 (2)	C13—C14	1.379 (2)	
N8—C7	1.4614 (18)	C13—H13	0.9500	
N8—H8	0.926 (15)	C14—H14	0.9500	
C2—C3	1.532 (2)	C15—C16	1.372 (2)	
C2—H2A	0.9900	C15—C24	1.413 (2)	
C2—H2B	0.9900	C16—C17	1.416 (2)	
C3—C4	1.515 (2)	C16—H16	0.9500	
C3—C7	1.544 (2)	C17—C22	1.415 (2)	
С3—Н3	1.0000	C17—C18	1.419 (2)	
C4—C5	1.500 (2)	C18—C19	1.360 (3)	
C5—C6	1.542 (3)	C18—H18	0.9500	
С5—Н5А	0.9900	C19—C20	1.397 (3)	
С5—Н5В	0.9900	C19—H19	0.9500	
С6—Н6А	0.9900	C20—C21	1.361 (2)	
C6—H6B	0.9900	C20—H20	0.9500	
C7—C15	1.517 (2)	C21—C22	1.419 (2)	
С7—Н7	1.0000	C21—H21	0.9500	
C9—C10	1.387 (2)	C22—C23	1.415 (2)	
C9—C14	1.395 (2)	C23—C24	1.355 (2)	
C10-C11	1.385 (2)	С23—Н23	0.9500	
C10—H10	0.9500	C24—H24	0.9500	
C11—C12	1.373 (3)			
C6—S1—C2	96.89 (10)	C12—C11—C10	121.29 (18)	
C9—N8—C7	120.55 (12)	C12—C11—H11	119.4	
C9—N8—H8	113.1 (10)	C10—C11—H11	119.4	
C7—N8—H8	111.8 (9)	C13—C12—C11	118.89 (17)	
C3—C2—S1	113.67 (13)	C13—C12—H12	120.6	
С3—С2—Н2А	108.8	C11—C12—H12	120.6	
S1—C2—H2A	108.8	C12—C13—C14	120.76 (17)	
С3—С2—Н2В	108.8	C12—C13—H13	119.6	
S1—C2—H2B	108.8	C14—C13—H13	119.6	
H2A—C2—H2B	107.7	C13—C14—C9	120.70 (16)	
C4—C3—C2	110.49 (16)	C13—C14—H14	119.7	
C4—C3—C7	110.36 (12)	C9—C14—H14	119.7	

C2—C3—C7	112.62 (13)	C16—C15—C24	118.46 (15)
С4—С3—Н3	107.7	C16—C15—C7	120.95 (14)
С2—С3—Н3	107.7	C24—C15—C7	120.59 (13)
С7—С3—Н3	107.7	C15—C16—C17	121.78 (15)
01-C4-C5	121.02 (17)	C15—C16—H16	119.1
01 - C4 - C3	121.02(17) 121.42(15)	C17—C16—H16	119.1
$C_{5}-C_{4}-C_{3}$	117 49 (15)	C^{22} C^{17} C^{16}	118 82 (14)
C4-C5-C6	111 66 (17)	C^{22} C^{17} C^{18}	118.67 (16)
C4-C5-H5A	109.3	C_{16} C_{17} C_{18}	122 51 (16)
C6-C5-H5A	109.3	C19 - C18 - C17	122.51(10) 120.67(17)
C_{4} C_{5} H5B	109.3	$C_{19} = C_{18} = C_{17}$	120.07 (17)
C6 C5 U5P	109.5	$C_{17} = C_{18} = H_{18}$	119.7
	109.5	C17 - C18 - H18	119.7
	107.9	C18 - C19 - C20	120.71 (17)
	113.05 (10)	C18—C19—H19	119.6
С5—С6—Н6А	109.0	C20—C19—H19	119.6
SI—C6—H6A	109.0	C21—C20—C19	120.40 (18)
С5—С6—Н6В	109.0	С21—С20—Н20	119.8
S1—C6—H6B	109.0	С19—С20—Н20	119.8
H6A—C6—H6B	107.8	C20—C21—C22	120.76 (18)
N8—C7—C15	113.57 (13)	C20—C21—H21	119.6
N8—C7—C3	106.28 (12)	C22—C21—H21	119.6
C15—C7—C3	111.80 (12)	C23—C22—C17	118.42 (15)
N8—C7—H7	108.3	C23—C22—C21	122.78 (16)
С15—С7—Н7	108.3	C17—C22—C21	118.79 (15)
С3—С7—Н7	108.3	C24—C23—C22	121.16 (15)
C10—C9—C14	118.27 (15)	С24—С23—Н23	119.4
C10—C9—N8	122.46 (14)	С22—С23—Н23	119.4
C14—C9—N8	119.17 (14)	C23—C24—C15	121.34 (14)
C11—C10—C9	120.08 (16)	C23—C24—H24	119.3
C11—C10—H10	120.0	C15—C24—H24	119.3
С9—С10—Н10	120.0		
C6—S1—C2—C3	57.57 (16)	N8—C9—C14—C13	175.40 (15)
<u>\$1-C2-C3-C4</u>	-59.40 (17)	N8-C7-C15-C16	135.46 (15)
<u>\$1-C2-C3-C7</u>	64 52 (19)	C_{3} — C_{7} — C_{15} — C_{16}	$-104\ 28\ (16)$
$C_{2} - C_{3} - C_{4} - O_{1}$	-12146(17)	N8-C7-C15-C24	-4472(19)
$C_{7} - C_{3} - C_{4} - O_{1}$	113 33 (16)	C_{3} C_{7} C_{15} C_{24}	75 54 (18)
C_{2} C_{3} C_{4} C_{5}	55 62 (19)	C_{24} C_{15} C_{16} C_{17}	-1.5(2)
$C_2 = C_3 = C_4 = C_5$	-60.58(10)	C_{7} C_{15} C_{16} C_{17}	1.3(2) 178 22 (14)
$C_{1} = C_{2} = C_{2} = C_{3}$	121.38(19)	$C_{15} = C_{15} = C_{10} = C_{17}$	1/6.33(14)
$C_{1}^{2} = C_{1}^{2} = C_{1}^{2} = C_{1}^{2}$	-55.7(2)	C15 - C16 - C17 - C22	1.0(2) -178.02(16)
$C_{3} - C_{4} - C_{5} - C_{0}$	-33.7(2)	C13 - C10 - C17 - C18	-178.03(10)
C4 - C5 - C6 - S1	59.1(2)	$C_{22} = C_{17} = C_{18} = C_{19}$	-0.7(3)
C2 - S1 - C6 - C5	-56.56 (16)	C16 - C17 - C18 - C19	1/8.91 (18)
$U_{2} = N_{2} = U_{2} = U_{2}$	-50.27 (19)	C1/-C18-C19-C20	0.7(3)
$C_{2} = N_{2} = C_{2} = C_{2}$	-1/9.60 (14)	C18—C19—C20—C21	0.2 (3)
C4—C3—C7—N8	-54.62 (17)	C19—C20—C21—C22	-1.1 (3)
C2—C3—C7—N8	-178.61 (15)	C16—C17—C22—C23	-0.4 (2)
C4—C3—C7—C15	-179.05 (13)	C18—C17—C22—C23	179.22 (15)
C2—C3—C7—C15	56.96 (19)	C16—C17—C22—C21	-179.83 (15)

C7—N8—C9—C10	-34.1 (2)	C18—C17—C22—C21	-0.2 (2)	
C7—N8—C9—C14	149.59 (15)	C20-C21-C22-C23	-178.28 (17)	
C14—C9—C10—C11	1.6 (2)	C20-C21-C22-C17	1.1 (3)	
N8—C9—C10—C11	-174.77 (16)	C17—C22—C23—C24	-0.8 (2)	
C9—C10—C11—C12	-0.8 (3)	C21—C22—C23—C24	178.61 (17)	
C10-C11-C12-C13	-0.5 (3)	C22—C23—C24—C15	0.9 (2)	
C11—C12—C13—C14	1.0 (3)	C16-C15-C24-C23	0.3 (2)	
C12—C13—C14—C9	-0.2 (3)	C7—C15—C24—C23	-179.57 (15)	
C10-C9-C14-C13	-1.1 (2)			

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N8—H8…O1 ⁱ	0.926 (15)	2.121 (16)	3.0450 (18)	175.4 (13)

Symmetry code: (i) -x+1, -y+1, -z+1.